52 research outputs found

    Coupling Coarse-Grained to Fine-Grained Models via Hamiltonian Replica Exchange

    Get PDF
    The energy landscape of biomolecular systems contains many local minima that are separated by high energy barriers. Sampling this landscape in molecular dynamics simulations is a challenging task, and often requires the use of enhanced sampling techniques. Here, we increase the sampling efficiency by coupling the fine-grained (FG) GROMOS force field to the coarse-grained (CG) Martini force field via the Hamiltonian replica exchange method (HREM). We tested the efficiency of this procedure using a lutein/octane system. In traditional simulations, cis-trans transitions of lutein are barely observed due to the high energy barrier separating these states. However, many of these transitions are sampled with our HREM scheme. The proposed method offers new possibilities for enhanced sampling of biomolecular conformations, making use of CG models without compromising the accuracy of the FG model

    Interactivity:the missing link between virtual reality technology and drug discovery pipelines

    Get PDF
    The potential of virtual reality (VR) to contribute to drug design and development has been recognised for many years. Hardware and software developments now mean that this potential is beginning to be realised, and VR methods are being actively used in this sphere. A recent advance is to use VR not only to visualise and interact with molecular structures, but also to interact with molecular dynamics simulations of 'on the fly' (interactive molecular dynamics in VR, IMD-VR), which is useful not only for flexible docking but also to examine binding processes and conformational changes. iMD-VR has been shown to be useful for creating complexes of ligands bound to target proteins, e.g., recently applied to peptide inhibitors of the SARS-CoV-2 main protease. In this review, we use the term 'interactive VR' to refer to software where interactivity is an inherent part of the user VR experience e.g., in making structural modifications or interacting with a physically rigorous molecular dynamics (MD) simulation, as opposed to simply using VR controllers to rotate and translate the molecule for enhanced visualisation. Here, we describe these methods and their application to problems relevant to drug discovery, highlighting the possibilities that they offer in this arena. We suggest that the ease of viewing and manipulating molecular structures and dynamics, and the ability to modify structures on the fly (e.g., adding or deleting atoms) makes modern interactive VR a valuable tool to add to the armoury of drug development methods.Comment: 19 pages, 3 figure

    Dual Resolution Membrane Simulations Using Virtual Sites

    Get PDF
    All-atomistic (AA) and coarse-grain (CG) simulations have been successfully applied to investigate a broad range of biomolecular processes. However, the accessible time and length scales of AA simulation are limited and the specific molecular details of CG simulation are simplified. Here, we propose a virtual site (VS) based hybrid scheme that can concurrently couple AA and CG resolutions in a single membrane simulation, mitigating the shortcomings of either representation. With some adjustments to make the AA and CG force fields compatible, we demonstrate that lipid bilayer properties are well kept in our hybrid approach. Our VS hybrid method was also applied to simulate a small lipid vesicle, with the inner leaflet and interior solvent represented in AA, and the outer leaflet together with exterior solvent at the CG level. Our multiscale method opens the way to investigate biomembrane properties at increased computational efficiency, in particular applications involving large solvent filled regions

    Resolving Donor-Acceptor Interfaces and Charge Carrier Energy Levels of Organic Semiconductors with Polar Side Chains

    Get PDF
    Organic semiconductors consisting of molecules bearing polar side chains have been proposed as potential candidates to overcome the limitations of organic photovoltaics owing to their enhanced dielectric constant. However, introducing such polar molecules in photovoltaic devices has not yet resulted in higher efficiencies. A microscopic understanding of the impact of polar side chains on electronic and structural properties of organic semiconductors is paramount to rationalize their effect. Here, the impact of such side chains on bulk heterojunction overall morphology, molecular configurations at donor-acceptor (DA) interfaces, and charge carrier energy levels is investigated. The multiscale modeling approach used allows to resolve DA interfaces with atomistic resolution while taking into account the large-scale self-organization process which takes place during the processing of an organic thin film. The polar fullerene-based blends are compared to the well-studied reference system, poly(3-hexyl-thiophene) (P3HT):phenyl-C-61-butyric acid methyl ester (PCBM). Introduction of polar side chains on a similar molecular scaffold does not affect molecular orientations at the DA interfaces; such orientations are, however, found to be affected by processing conditions and polymer molecular weight. Polar side chains, instead, are found to impact considerably the charge carrier energy levels of the organic blend, causing electrostatic-induced broadening of these levels

    Martini 3 Coarse-Grained Force Field:Small Molecules

    Get PDF
    The recent re-parametrization of the Martini coarse-grained force field, Martini 3, improved the accuracy of the model in predicting molecular packing and interactions in molecular dynamics simulations. Here, we describe how small molecules can be accurately parametrized within the Martini 3 framework and present a database of validated small molecule models. We pay particular attention to the description of aliphatic and aromatic ring-like structures, which are ubiquitous in small molecules such as solvents and drugs or in building blocks constituting macromolecules such as proteins and synthetic polymers. In Martini 3, ring-like structures are described by models that use higher resolution coarse-grained particles (small and tiny particles). As such, the present database constitutes one of the cornerstones of the calibration of the new Martini 3 small and tiny particle sizes. The models show excellent partitioning behavior and solvent properties. Miscibility trends between different bulk phases are also captured, completing the set of thermodynamic properties considered during the parametrization. We also show how the new bead sizes allow for a good representation of molecular volume, which translates into better structural properties such as stacking distances. We further present design strategies to build Martini 3 models for small molecules of increased complexity

    Piezo1 Forms Specific, Functionally Important Interactions with Phosphoinositides and Cholesterol

    Get PDF
    Touch, hearing, and blood pressure regulation require mechanically gated ion channels that convert mechanical stimuli into electrical currents. One such channel is Piezo1, which plays a key role in the transduction of mechanical stimuli in humans and is implicated in diseases, such as xerocytosis and lymphatic dysplasia. There is building evidence that suggests Piezo1 can be regulated by the membrane environment, with the activity of the channel determined by the local concentration of lipids, such as cholesterol and phosphoinositides. To better understand the interaction of Piezo1 with its environment, we conduct simulations of the protein in a complex mammalian bilayer containing more than 60 different lipid types together with electrophysiology and mutagenesis experiments. We find that the protein alters its local membrane composition, enriching specific lipids and forming essential binding sites for phosphoinositides and cholesterol that are functionally relevant and often related to Piezo1-mediated pathologies. We also identify a number of key structural connections between the propeller and pore domains located close to lipid-binding sites

    Lipid phase separation in the presence of hydrocarbons in giant unilamellar vesicles

    Get PDF
    Hydrophobic hydrocarbons are absorbed by cell membranes. The effects of hydrocarbons on biological membranes have been studied extensively, but less is known how these compounds affect lipid phase separation. Here, we show that pyrene and pyrene-like hydrocarbons can dissipate lipid domains in phase separating giant unilamellar vesicles at room temperature. In contrast, related aromatic compounds left the phase separation intact, even at high concentration. We hypothesize that this behavior is because pyrene and related compounds lack preference for either the liquid-ordered (Lo) or liquid-disordered (Ld) phase, while larger molecules prefer Lo, and smaller, less hydrophobic molecules prefer Ld. In addition, our data suggest that localization in the bilayer (depth) and the shape of the molecules might contribute to the effects of the aromatic compounds. Localization and shape of pyrene and related compounds are similar to cholesterol and therefore these molecules could behave as such

    Capturing Choline–Aromatics Cation−π Interactions in the MARTINI Force Field

    Get PDF
    Cation-Ï€interactions play an important role in biomolecular recognition, including interactions between membrane phosphatidylcholine lipids and aromatic amino acids of peripheral proteins. While molecular mechanics coarse grain (CG) force fields are particularly well suited to simulate membrane proteins in general, they are not parameterized to explicitly reproduce cation-Ï€interactions. We here propose a modification of the polarizable MARTINI coarse grain (CG) model enabling it to model membrane binding events of peripheral proteins whose aromatic amino acid interactions with choline headgroups are crucial for their membrane binding. For this purpose, we first collected and curated a dataset of eight peripheral proteins from different families. We find that the MARTINI CG model expectedly underestimates aromatics-choline interactions and is unable to reproduce membrane binding of the peripheral proteins in our dataset. Adjustments of the relevant interactions in the polarizable MARTINI force field yield significant improvements in the observed binding events. The orientation of each membrane-bound protein is comparable to reference data from all-atom simulations and experimental binding data. We also use negative controls to ensure that choline-aromatics interactions are not overestimated. We finally check that membrane properties, transmembrane proteins, and membrane translocation potential of mean force (PMF) of aromatic amino acid side-chain analogues are not affected by the new parameter set. This new version "MARTINI 2.3P" is a significant improvement over its predecessors and is suitable for modeling membrane proteins including peripheral membrane binding of peptides and proteins
    • …
    corecore